Quantitative Research

Sex Differences in the Association of Youth Body Mass Index to Adult Health-related Quality of Life: The Physical Activity Longitudinal Study

Katya M. Herman, PhD, Wilma M. Hopman, MA, Cora L. Craig, MSc

Abstract

Objective: The long-term consequences of youth overweight on adult health-related quality of life (HRQL) have not been documented. This study examines sex differences in the association between youth body mass index (BMI) and adult HRQL.

Methods: Subjects included 139 male and 142 female participants aged 7-18 in the 1981 Canada Fitness Survey, followed up in 2002-04. The associations of youth BMI to adult HRQL (SF-36) were examined with bivariate correlations, differences in means and multivariate linear regression analyses.

Results: Bivariate analyses revealed positive associations between youth overweight and mental aspects of adult HRQL in females, and weak negative associations with physical aspects, but no significant associations in males. All overweight male and female youth scored the maximum (100) on Role Emotional (RE). In females, compared to healthy weight youth, overweight youth scored 16.0, 13.4, 12.7, and 10.9 points higher on general health (GH), vitality (VT), mental health (MH), and the mental component score (MCS) in adulthood, respectively; a 1 unit increase in youth BMI led to 1.7, 1.5, and 1.4 point increases in adult VT, MH and MCS scores, respectively. Associations were attenuated with the removal of adult BMI from the models, but remained strong for MH and MCS.

Conclusions: Overweight in youth did not have a significant negative impact on HRQL two decades later; rather, a positive association was found with mental aspects of adult HRQL in females.

Key words: Body mass index; body weight; adolescent obesity; longitudinal studies; mental health; quality of life

La traduction du résumé se trouve à la fin de l’article.

Obesity leads to increased risk of numerous chronic diseases and conditions, including early mortality; however, almost 60% of Canadian adults and over 1 in 4 young people aged 2-18 years are overweight/obese.

Health-related quality of life (HRQL) refers to perceived physical and mental health over time. Research examining the links between obesity and HRQL in healthy general population samples has only recently begun to evolve. In adults, obesity is often associated with significant impairments in HRQL, with greater impairments associated with greater degrees of obesity, and weight loss leading to improved HRQL. Yet, some studies have shown a positive association between mental HRQL and weight status. More limited research exists linking youth obesity to poorer youth HRQL, including effects on self-reported health, self-esteem, and physical and social health and functioning.

The long-term effects of youth obesity on adult HRQL are unclear; however, over 90% of pediatricians believe that youth overweight could affect future HRQL. In a previous investigation of Canadian youth followed up 2 decades later, we reported that overweight youth had greater odds of scoring at or above the norm on several aspects of HRQL in adulthood, particularly the mental aspects, compared to healthy weight youth. To our knowledge, the study, using dichotomized HRQL outcomes based on Canadian normative values, was the first to explore the potential long-term effects of youth body mass index (BMI) on HRQL in adulthood. The current objectives are to explore the relationship between youth BMI and adult physical and mental HRQL using continuous HRQL outcomes, examining differences by sex.

Methods

Sample

Data were from the Physical Activity Longitudinal Study (PALS), the 22-year follow-up of a 20% subsample of participants ages ≥7 from the nationally representative 1981 Canada Fitness Survey (CFS; N=23,397). Detailed information regarding the conceptual design, methods and ethics approval of PALS has previously been published. PALS was designed to examine the long-term effects of PALS on physical activity and HRQL.

Sample characteristics have been described elsewhere. In brief, participants were aged 7-18 at baseline, with a mean age of 11.5 years. There were 23,397 participants who completed the baseline assessment, and 3,120 participants were included in the follow-up. Of these, 1,396 participants (44.6%) were excluded due to missing data on covariates, leaving 1,724 participants for the follow-up analysis. The sample was predominantly female (61%) and Caucasian (84%). The sample was representative of the Canadian population in terms of age, sex, and ethnicity.

Methods

Bivariate analyses were conducted to examine the relationship between youth BMI and adult HRQL. Logistic regression was used to examine the relationship between youth BMI and the odds of scoring at or above the norm on HRQL. Multivariate linear regression was used to examine the relationship between youth BMI and continuous HRQL outcomes. All analyses were adjusted for age, sex, and ethnicity.

Conclusion

Overweight in youth did not have a significant negative impact on HRQL two decades later; rather, a positive association was found with mental aspects of adult HRQL in females.

Acknowledgements

K.M. Herman was supported by a Canadian Institutes of Health Research Doctoral Research Award. PALS was funded by the Social Sciences and Humanities Research Council of Canada and the Canadian Institutes of Health Research (Strategic Joint Initiative Grant on Society, Culture and the Health of Canadians II Grant No. 839.2000-1032; C.L. Craig, L. Gauvin). The 1981 CFS was supported by Fitness and Amateur Sport (now the Healthy Living Program of the Public Health Agency of Canada). The authors thank Peter Katzmarzyk for his contribution to the conceptualization of the paper and direction provided during early stages of this work.

Conflicts of Interest

None to declare.
Follow-up 2002-2004: Ages 29-41 years

35.4 (3.4) 34.9 (3.6)

and worse than average function, respectively. A 5-point differ-

mean of 50, with scores above and below 50 representing better

mental component summaries (PCS and MCS), standardized to a

Domains are also weighted and summed to calculate physical and

BMI was calculated as weight (kg)/height (m2). Youth overweight and obesi-

(2002-04), all data were self-reported via questionnaire. BMI was

Baseline height and weight were measured in 1981. At follow-up

had BMI data at baseline and HRQL data in 2002-2004 (ages 29-

281 individuals (139 males, 142 females) ages 7-18 in 1981, who

had BMI data at baseline and HRQL data in 2002-2004 (ages 29-

This represents 34.4% of the 817 participants aged 7-18 at base-

Statistical analysis

The distributions of 5 of 8 SF-36 outcomes were negatively skewed, with many participants achieving the maximum score of 100 on the 8 domains: GH, VT and MH appeared normally distributed, and

Table 1. Sample Characteristics at Baseline (1981) and 22-year Follow-up (2002-04) – The Physical Activity Longitudinal Study

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Males (N=139)</th>
<th>Females (N=142)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline 1981: Ages 7-18 years</td>
<td>12.7 (3.4)</td>
<td>12.2 (3.5)</td>
</tr>
<tr>
<td>BMI: Healthy Weight</td>
<td>91.4%</td>
<td>90.8%</td>
</tr>
<tr>
<td>Overweight/Obese*</td>
<td>8.6%</td>
<td>9.2%</td>
</tr>
<tr>
<td>PA (kcal/kg/day)</td>
<td>4.9 (5.5)</td>
<td>4.4 (4.9)</td>
</tr>
<tr>
<td>PA ≤1.5 kcal/kg/day</td>
<td>80.8%</td>
<td>67.0%</td>
</tr>
<tr>
<td>PA >3.0 kcal/kg/day</td>
<td>57.7%</td>
<td>46.4%</td>
</tr>
<tr>
<td>Follow-up 2002-2004: Ages 29-41 years</td>
<td>35.4 (3.4)</td>
<td>34.9 (3.6)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>26.0 (3.4)</td>
<td>25.3 (5.2)</td>
</tr>
<tr>
<td>Underweight (<18.5)</td>
<td>1.4%</td>
<td>1.5%</td>
</tr>
<tr>
<td>Healthy Weight (18.5-24.9)</td>
<td>40.6%</td>
<td>61.2%</td>
</tr>
<tr>
<td>Overweight (25.0-29.9)</td>
<td>47.1%</td>
<td>22.4%</td>
</tr>
<tr>
<td>Obese (>30.0)</td>
<td>10.9%</td>
<td>14.9%</td>
</tr>
<tr>
<td>PA (kcal/kg/day)</td>
<td>4.2 (5.0)</td>
<td>3.0 (3.6)</td>
</tr>
<tr>
<td>PA ≤1.5 kcal/kg/day</td>
<td>63.7%</td>
<td>60.2%</td>
</tr>
<tr>
<td>PA >3.0 kcal/kg/day</td>
<td>42.0%</td>
<td>31.2%</td>
</tr>
<tr>
<td>Current Smoker</td>
<td>19.0%</td>
<td>21.3%</td>
</tr>
<tr>
<td>Self-Reported Health: Very Good/Excellent</td>
<td>48.5%</td>
<td>45.1%</td>
</tr>
<tr>
<td>Married</td>
<td>71.7%</td>
<td>82.3%</td>
</tr>
<tr>
<td>Education: ≥1 University Degree</td>
<td>43.1%</td>
<td>43.6%</td>
</tr>
<tr>
<td>Total Household Income: ≥$60,000</td>
<td>63.8%</td>
<td>68.5%</td>
</tr>
<tr>
<td>Comorbidities: ≥1</td>
<td>46.8%</td>
<td>62.0%</td>
</tr>
<tr>
<td>Longitudinal BMI change (1981–2002-2004): Healthy Weight – Healthy Weight</td>
<td>41.2%</td>
<td>59.1%</td>
</tr>
<tr>
<td>Healthy Weight – Overweight/Obese</td>
<td>50.7%</td>
<td>32.6%</td>
</tr>
<tr>
<td>Overweight/Obese – Healthy Weight</td>
<td>0.0%</td>
<td>3.0%</td>
</tr>
<tr>
<td>Overweight/Obese – Overweight/Obese</td>
<td>8.1%</td>
<td>5.3%</td>
</tr>
</tbody>
</table>

Values are means (SD) or percentages of total sample.

* There is only 1 obese child (F); 12 overweight M, 12 overweight F.

Table 2. Spearman Correlations Between Youth BMI† (1981) and Adult SF-36 Scores (2002-04) – The Physical Activity Longitudinal Study

<table>
<thead>
<tr>
<th>SF-36</th>
<th>Male (n=139)</th>
<th>p-value</th>
<th>Female (n=142)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF</td>
<td>-0.02</td>
<td>0.784</td>
<td>-0.03</td>
<td>0.777</td>
</tr>
<tr>
<td>RP</td>
<td>0.06</td>
<td>0.507</td>
<td>-0.08</td>
<td>0.355</td>
</tr>
<tr>
<td>BP</td>
<td>0.09</td>
<td>0.320</td>
<td>-0.09</td>
<td>0.301</td>
</tr>
<tr>
<td>GH</td>
<td>-0.02</td>
<td>0.815</td>
<td>-0.08</td>
<td>0.339</td>
</tr>
<tr>
<td>VT</td>
<td>-0.07</td>
<td>0.409</td>
<td>0.14</td>
<td>0.090</td>
</tr>
<tr>
<td>SF</td>
<td>0.00</td>
<td>0.976</td>
<td>0.14</td>
<td>0.095</td>
</tr>
<tr>
<td>RE</td>
<td>0.10</td>
<td>0.231</td>
<td>0.19</td>
<td>0.031</td>
</tr>
<tr>
<td>MH</td>
<td>0.09</td>
<td>0.319</td>
<td>0.22**</td>
<td>0.008</td>
</tr>
<tr>
<td>PCS</td>
<td>-0.04</td>
<td>0.647</td>
<td>-0.21*</td>
<td>0.013</td>
</tr>
<tr>
<td>MCS</td>
<td>0.02</td>
<td>0.781</td>
<td>0.26**</td>
<td>0.002</td>
</tr>
</tbody>
</table>

† Age-adjusted residuals from regression of BMI on Age.

Figure 1. Mean (95% CI) adult SF-36 scores (2002-04) by youth weight status (1981) – The Physical Activity Longitudinal Study: (a) Males; (b) Females

PCs and MCS deviated only slightly from normal. Spearman correla-
tions between youth BMI (ages 7-18) and adult SF-36 scores were
calculated. To account for the effect of age on youth BMI, the
latter was regressed on age, and the residuals used in analysis to
represent age-adjusted youth BMI. Differences in mean adult SF-36
scores by youth weight status were then assessed by independent
samples t-tests and Mann Whitney U tests, adjusted for multiple
comparisons (Holm method). Linear regression analysis was per-
formed for GH, VT, MH, PCS and MCS. Initially, the association
between adult BMI and the SF-36 outcomes was assessed; youth BMI was then tested both as a continuous and dichotomous predictor. Models were adjusted for age, adult physical activity, household income, education, married, current smoker, # comorbidities; “A” models adjusted for adult BMI, in addition to previous factors.

RESULTS

Descriptive characteristics of the study participants are reported in Table 1. At baseline, approximately 9% of participants were overweight (12 male, 12 female) or obese (1 female); 22 years later, approximately 58% of males and 37% of females were classified as overweight/obese. Over 80% of overweight youth remained overweight/obese as adults, while about 36% of healthy weight youth became overweight/obese.

In females, youth BMI was significantly negatively correlated with PCS, and significantly positively correlated with RE, MH and MCS (Table 2). No significant correlations existed for males.

Figure 1 (a & b) illustrates the mean SF-36 scores by sex for healthy weight vs. overweight/obese youth. Both male and female overweight youth scored higher on RE (all scored the maximum of 100), and overweight females scored higher on MH and MCS, compared to their healthy weight counterparts; however, these differences did not remain statistically significant following adjustment for multiple comparisons.

An initial adjusted regression analysis assessed the association of adult BMI with the 5 normally distributed SF-36 scores. Overweight/obese males scored significantly lower on PCS (p<0.01) and overweight/obese females scored significantly lower on GH (p<0.05) compared to their healthy weight adult counterparts (data not shown).

Tables 3 and 4 show the linear regression results, by sex, for youth BMI and adult SF-36 scores, with and without adjustment for adult BMI. No significant predictions were observed in the male participants (Table 3). Prior to adjustment for adult BMI, overweight/obese female youth scored 10 points higher on both VT and MH and 9.1 points higher on MCS in adulthood, compared to healthy weight female youth (Table 4a, Models A), and a 1 unit increase in youth BMI led to 1.2 and 1.1 point increases in adult MH and MCS, respectively (Table 4b, Models A). After adjustment for adult BMI, on average, overweight/obese female youth scored 16, 13.4, and 12.7 points higher on GH, VT and MH in adulthood, respectively, and 10.9 points higher on MCS, compared to healthy weight female youth (Table 4a, Models B); a 1 unit increase in youth BMI led to 1.7, 1.5 and 1.4 point increases in adult VT, MH and MCS, respectively (Table 4b, Models B).

DISCUSSION

To our knowledge, the PALS study is the first to examine the long-term effects of youth overweight on adult HRQL. Building on earlier findings,2, we found significant positive associations between youth BMI and subsequent adult HRQL 22 years later in females, but no association in males. Past research has shown that youth overweight/obesity can affect physical growth and development into adulthood,19 and is linked to worse self-reported health,9 increased likelihood of physical limitations,8,9 decreased psychosocial functioning and self-esteem,6,20 and increased incidence of bullying.21 However, we found no long-term negative implications on adult HRQL, at least at moderate levels of youth overweight.

In a previous analysis comparing the PALS sample against Canadian SF-36 normative values, overweight youth were more likely than healthy weight youth to score at/above the norm on both MH and MCS, with positive associations also found for GH, SF and RE; however, results for GH in particular implicated adult BMI in a moderating role, with the relative increase in BMI from youth to adulthood likely the key factor involved, rather than youth BMI itself exerting an independent effect.22

In the present sex-stratified analysis, a higher youth BMI predicted higher absolute scores on RE, VT, MH and MCS in adulthood, but only in females. Regression results are presented both with and without adjustment for adult BMI, for reasons discussed at length previously.22 Briefly, as this variable may not be a true confounder22,23 but may instead (or also) be a moderator in the pathway from youth BMI to adult HRQL, the reversal paradox may be invoked whereby the association between two variables can be reversed or enhanced when another variable is statistically controlled.23,24 Indeed, the relationship of youth BMI with GH in females became significant only upon inclusion of adult BMI in the regression model. This inclusion also somewhat strengthened the positive relationship of youth BMI to VT, MH and MCS. As adult
YOUTH BMI AND ADULT HRQL

BMI was also found to be a significant negative predictor of GH, it is likely that the relationships may be partly (VT, MH and MCS) or completely (GH) due to the relative change in BMI from youth to adulthood, rather than to a purely independent effect of youth BMI on adult HRQL.12

In adults, several studies have reported that overweight and obesity were related to poorer physically oriented SF-36 outcomes.5,6,25-28 In this analysis, current adult BMI was a significant negative predictor of GH (females) and PCS (males) only. While tracking of BMI in the PALS sample is high, with over 80% of overweight youth becoming overweight/obese adults, the majority of overweight/obese adults were not overweight in their youth.29 Thus, current adult weight status may be more important to physical HRQL than past youth weight status.

Previously reported associations of adult obesity with the mentally oriented SF-36 outcomes have been weaker and less clear than those found for the physical domains and PCS,25,26,28 including some studies which found a positive association between adult obesity and the SF-36 mental domains;5,7,27 as such, our findings of a positive association of youth BMI to the adult RE, MH and MCS may not be completely unusual.

While potential sex differences have been identified in previous studies, these have been inconsistent. One study showed that obese men ages 16-34 were more likely to rate both their physical and mental HRQL lower than healthy weight men, compared to women who did not report worse mental HRQL.28 Another found that after controlling for physical ill-health, overweight and obesity were associated with better mental health in women, but not in men.7 Another reported that while both obese men and women showed worse physical functioning than healthy weight persons, obesity was associated with better mental HRQL in males only.5

As very few overweight youth became healthy weight adults (Table 1), relative “weight loss” over time is unlikely to be driving the positive association of youth overweight with adult mental HRQL in females. In a previous analysis of longitudinal BMI status change, PALS participants who were overweight/obese both as youth and adults had significantly greater odds of scoring at/above the norm on both MH and MCS, while relative “weight gain” over time led to decreased odds of scoring at/above the norm on GH.12 As well, in a logistic regression stratified by adult BMI categories, youth BMI appeared to be a significant positive predictor of scoring at/above the norm on RE, MH and MCS in both healthy weight and overweight/obese adults.15 The present analysis confirms a positive association of youth BMI to adult mental HRQL in terms of absolute scores in females, which seems at least partly independent of adult BMI or the change in weight between the two time points.

The main strengths of this research are the 22-year length of follow-up from childhood into adulthood in a representative Canadian population sample, the use of measured BMI data at baseline, and the use of the valid and widely-accepted SF-36 instrument.

Study limitations include the small sample size and high attrition, a common problem in longitudinal studies spanning several decades. BMI as a measure of overweight is inherently limited in its lack of information regarding body composition, and lack of sensitivity to youth maturational age; however, it remains the most widely investigated and easily used indicator of weight-related health risk on a population level. Moreover, the effects of age and maturation were diminished by our use of IOTF cut-offs for youth BMI categorization, age-adjusting youth BMI to examine correlations, and adjusting for age in regressions, all within a sex-stratified analysis. Finally, while the prevalence of youth overweight in the PALS sample is representative of Canada in 1981, the low absolute number of overweight/obese youth (only 1 obese child) may have impacted results. As our results are based on a primarily healthy weight sample, caution should be used when extrapolating findings to overweight/obese groups due to the small sample in these groups. The prevalence of youth overweight/obesity has nearly tripled since that time,2 which may yet lead to negative consequences on HRQL over the long term.

In conclusion, these results suggest that moderate levels of youth overweight may not lead to increased risk of poorer HRQL in adulthood, and may be associated with better mentally-oriented HRQL in females. However, as youth overweight has known immediate health consequences,19 and tracks strongly into adulthood,26 where it is associated with substantially increased risk of a host of other biomedical conditions,1 it is not an issue that can be ignored. It is also possible that greater and more negative HRQL consequences might result from the higher degrees of youth obesity present in today’s population. More research is needed on larger cohorts with a higher prevalence and degree of youth obesity to further assess the long-term impact on physical and mental health, including further exploration of sex differences, possible critical age ranges, and the role of BMI status changes over time.

REFERENCES

28. Herman KM, Craig CL, Gauvin L, Katzmarzyk PT. Tracking of obesity and adult HRQL YOUTH BMI AND ADULT HRQL

RÉSUMÉ

Objectifs : Les conséquences à long terme du surpoids durant l’enfance sur la qualité de vie liée à la santé (QVLS) à l’âge adulte n’ont pas été étudiées. Nous examinons ici l’écart entre les sexes dans l’association entre l’indice de masse corporelle (IMC) durant l’enfance et la QVLS à l’âge adulte.

Résultats : Les analyses bivariées ont mis au jour des associations positives entre le surpoids durant l’enfance et les aspects mentaux de la QVLS à l’âge adulte chez les femmes, ainsi que de faibles associations négatives avec les aspects physiques, mais aucune association significative chez les hommes. Tous les enfants en surpoids, garçons et filles, ont obtenu le score maximal (100) à l’égard des « limitations du rôle liées à la santé mentale » (RE). Chez les filles, comparativement aux enfants ayant un poids-santé, les enfants en surpoids ont obtenu 16,0, 13,4, 12,7 et 10,9 points de plus, respectivement, pour la santé générale (GH), la vitalité (VT), la santé mentale (MH) et le score mental (MCS) à l’âge adulte; une augmentation d’1 unité dans l’IMC durant l’enfance correspondait à des augmentations de 1,7, 1,5 et 1,4 points dans les indices VT, MH et MCS à l’âge adulte, respectivement. Ces associations étaient atténuées lorsqu’on retirait des modèles l’IMC à l’âge adulte, mais elle demeurait forte pour la santé mentale et le score mental.

Conclusion : Nous n’avons pas observé d’incidence négative significative du surpoids durant l’enfance sur la QVLS 20 ans plus tard; au lieu de cela, nous avons observé une association positive avec les aspects mentaux de la QVLS à l’âge adulte chez les filles.

Mots clés : indice de masse corporelle; poids; obésité adolescente; études longitudinales; santé mentale; qualité de vie